COMP Lab #2 Complex Queries

e Use the Pine Valley database. This is the database that you installed in Lab 1.
For most of the beginning queries, you don't need the "Big" version of Pine Valley.
For the "more complicated" queries, use the "Big" version of the Pine Valley Database.

It has more tables, some structural changes, and a lot more data.
For this lab, you will need the DDL and the first of the two data files (load1)
For Homework 4, you will also need load2.
Cross Product (no join condition)
SELECT *
FROM customer _t, order_t;

SELECT *
FROM customer_t
JOIN order_t;

With a join condition: NOTE that these are INNER JOINS (deprecated in version 5 as a clause)
¢ duplicate column for join field (Equijoin)
+ only those records with matching join field are included

SELECT Customer_t.CustomerlD, Order_T.CustomerlD, CustomerName,OrderlD
FROM Customer_T,Order_t

WHERE Customer_T.CustomerlD = Order_T.CustomerID

ORDER BY OrderlD;

alternatively: here we explicitly select both CustomerlD fields
SELECT Customer_t.CustomerlD, Order_T.CustomerlD, CustomerName,OrderlD
FROM Customer_T JOIN Order_t
USING (CustomerID)
ORDER BY OrderlID;
Natural Join much more common
SELECT *
FROM Customer_T NATURAL JOIN Order_t;

Outer Join (LEFT [OUTER] JOIN)
SELECT Customer_t.CustomerlD,CustomerName,OrderlD
FROM Customer_T LEFT OUTER JOIN Order_t
Using (CustomerID);

Outer Join (RIGHT [OUTER] JOIN) the FK constraint makes this not so outer
SELECT Customer_t.CustomerlD,CustomerName,OrderlD
FROM Customer_T RIGHT OUTER JOIN Order_t
Using (CustomerlID);
Example joining 4 tables:
Assemble all information necessary to create an invoice for order number 1006.

Self Join (often for a unary relationship)
What are the employee ID and name of each employee and the name of his or her supervisor
(label the supervisor's name Manager)?
FROM Employee_t E, Employee_t M

Please note that this query is run twice: once on Pine Valley, and once on "Big" Pine Valley.

Subquery (sometimes called a "nested" subquery)
What are the name and address of the customer who placed order number 1008?
Try this with a JOIN on Customer and Order, which could get slow and S.)

(Try the same query, constructed as a subquery.)

What are the names of customers who have placed orders?
Which customers have not placed any orders for computer desks?

EXISTS: returns true or false
Correlated subquery: use the result of the outer query to compute the inner query.
What are the OrderIDs for all orders that have included

furniture finished in Natural Ash?

(We'll work through this one together!)

SELECT DISTINCT OrderID FROM OrderLine_t
WHERE EXISTS
(SELECT *
FROM Product_T
WHERE ProductID=0rderLine_t.ProductID
AND ProductFinish='Natural Ash');

(b) Processing a correlated subquery

What are the order IDs for all orders that have included furniture finished in natural ash?

SELECT DISTINCT OrderlD FROM OrderLine_T
WHERE EXISTS
(SELECT *
FROM Product _T
WHERE ProductlD = OrderLine_T.ProductiD
AND Productfinish = ‘Natural Ash');

ProductlD| ProductDescription | ProductFinish | ProductStandardPrice | ProductLinelD

NE 1| End Table Cherry $175.00 10001

@] 2 > 2|)Coffee Table Natural Ash $200.00 20001

@] 4 > 3| Computer Desk Natural Ash $375.00 20001

IEl 4 Center | Natural Maple $650.00 30001

B8] 5| Writer's Desk Cherry $325.00 10001

B 6| 8-Drawer Dresser | White Ash $750.00 20001

éi 7| Dining Table Natural Ash $800.00 20001 |

El 8 Computer Desk Walnut $250.00 30001
%*| [(AutoNumber); $0.00

1. The first order 1D is selected from OrderLine_T: OrderlD =1001

2. The subquery is evaluated to see if any product in that order has a natural ash finish.
Product 2 does, and is part of the order. EXISTS is valued as true and the order ID is
added to the result table.

3. The next order ID is selected from OrderLine_T: OrderlD =1002.

4. The subquery is evaluated to see if the product ordered has a natural ash finish. It does.
EXISTS is valued as true and the order ID is added to the result table.

5. Processing continues through each order ID. Orders 1004, 1005, and 1010 are not

included in the result table because they do not include any furniture with a natural ash
finish. The final result table is shown in the text on page 302.

Copyright ©2013 Pearson Education, publishing as Prentice Hall

The subquery is executed for each order line in the outer query. The subquery

checks for each order line to see if the finish for the product on that order line is natural
ash. If this is true (EXISTS), the outer querydisplays the order ID for that order. The
outer query checks this one row at a tme for every row in the set of referenced rows
(the OrderLine_T table). There have been seven such orders, as the results shows.

List the details about the product with the highest standard price.
SELECT ProductDescription, ProductFinish, ProductStandardPrice
FROM Product_t PA
WHERE PA.ProductStandardPrice > ALL

(SELECT ProductStandardPrice FROM Product_t PB
WHERE PB.ProductID !=PA.ProductID);

Derived Tables

Show the product description, product standard price, and overall average standard price
for all products that have a standard price that is higher than the average standard price.
NOTE: We actually demonstrated this example in Lab 1.

SELECT ProductDescription, ProductStandardPrice,AvgPrice

FROM

(SELECT AVG(ProductStandardPrice)AS AvgPrice FROM Product_t) AS ProdAvg, Product_T
WHERE ProductStandardPrice > AvgPrice;

UNION (just an example)
The following query determines the customer(s) who has in a given line item purchased
the largest quantity of any Pine Valley product and the customer(s) who has in a given
line item purchased the smallest quantity and reutrns the result in one table.

SELECT C1.CustomerlD, CustomerName,OrderedQuantity,'Largest Quantity' AS Quantity
FROM Customer_T C1, Order_T O1, OrderLine_T Q1
WHERE C1.CustomerID =01.CustomerID
AND O1.0rderID = Q1.0rderID
AND OrderedQuantity =
(SELECT MAX(OrderedQuantity)
FROM OrderlLine_T)
UNION
SELECT C1.CustomerlD, CustomerName,OrderedQuantity,'SMallest Quantity' AS Quantity
FROM Customer_T C1, Order_T O1, OrderLine_T Q1
WHERE C1.CustomerID =01.CustomerID
AND 01.0rderID = Q1.0rderID
AND OrderedQuantity =
(SELECT MIN(OrderedQuantity)

FROM OrderLine_T)
ORDER BY 3;

There is also INTERSECT and MINUS (Or DIFFERENCE OR EXCEPT)

Conditional Expressions

{CASE expression
{WHEN expression

THEN {expression | NULL}} ...

| {WHEN predicate

THEN {expression [NULLY ...
[ELSE {expression NULL}]

END }

| (NULLIF (expression, expression) }
| (COALESCE (expression .. .) }

Copyright ©2013 Pearson Education, publishing as Prentice Hall

"What products are included in ProductLine 1?"
SELECT CASE
WHEN ProductLinelD =1 THEN ProductDescription
ELSE '###H#'
END AS ProductDescription
FROM Product_t;

More complicated SQL Queries

* For each salesperson, list his or her biggest-selling product.
Hint: You may find it helpful to first define a view, then query against that view.
--> (use the BIG version of PVFC for this query)
CREATE VIEW Tsales AS
SELECT SalespersonName, ProductDescription,
SUM(OrderedQuantity) AS TotOrders

FROM Salesperson_T, OrderLine_T ,Product_T, Order_T
WHERE Salesperson_T.SalespersonID = Order_T.SalespersonID
AND Order_T.OrderlID = Orderline_T.OrderID
AND orderLine_T.ProductID = Product_t.ProductID
GROUP BY SalespersonName,ProductDescription;

Next, we write a correlated subquery using the view:
SELECT SalespersonName,ProductDescription
FROM Tsales AS A
WHERE Totorders = (SELECT MAX(Totorders) FROM Tsales B
WHERE B.SalespersonName = A.SalespersonName);

* Write an SQL query to list all salespersons who work in the territory where the
most end tables have been sold.

* First, you have to create a table to store the query results.
Create table TopTerritory;
Then, INSERT INTO TOPTERRITORY (SELECT.....)
Or, do it in one statement: CREATE TABLE TOPTERRITORY SELECT...

SELECT Territory_t.TerritorylD,
SUM(OrderedQuantity) AS TotSales

FROM Territory_t JOIN (Product_T JOIN
(((Customer_T JOIN DoesBusinessin_T ON
Customer_T.CustomerID = DoesBusinessIin_t.CustomerlID)
JOIN Order_t ON Customer_t.CustomerID =
Order_t.CustomerID) Join OrderLine_t ON
Order_T.OrderID=0OrderLine_t.OrderID) ON
Product_t.ProductID = OrderLine_t.PRoductID) ON
Territory_t.TerritorylD = DoesBusinessin_t.TerritoryID

WHERE ((ProductDescription)='End Table')

GROUP BY Territory_t.TerritorylD

ORDER BY TotSales DESC

LIMIT 1;

+ OR, you can use this:
SELECT Territory_t.TerritorylD,
SUM(OrderedQuantity) AS TotSales
FROM Territory_t, Customer_t, DoesBusinessin_t, OrderlLine_t, Order _t, Product_t
WHERE Customer_T.CustomerlD = DoesBusinessin_t.CustomerlD
AND Order_T.OrderlD=OrderLine_t.OrderID
AND Customer_t.CustomerlID = Order_t.CustomerID
AND Product_t.ProductID = OrderlLine_t.ProductID
AND Territory_t.TerritorylD = DoesBusinessin_t.TerritorylD
AND ProductDescription = 'End Table'
GROUP BY Territory_t.TerritorylD
ORDER BY TotSales DESC
LIMIT 1;

* THEN, pose a query against the new table (or you could have made it a view, whatever)
SELECT SalesPerson_T.SalesPersonlD,SalesPersonName
FROM Territory_T JOIN SalesPerson_T ON
Territory_T.TerritorylD = SalesPerson_T.TerritorylD
WHERE SalesPerson_T.TerritoryID IN

(SELECT TerritorylD FROM TopTerritory);

[Your Company Name]
[Your Company Slogan]
[Acelress]

[Town, County Postal Code]
Pruzrie [01234 5E7ER0] Fax [01234 5678590]

Billing Addres s:

INVOICE

INVDICE N [100]
DATE: 9 October, 2011

Delvery Ad dress:
|[Mams] [Mame]
[Cermgany] [Compary]
|Addresas)] [Adidress]
[Town, County Postal Code] [Town, County Postal Code]
|Phane] [Phione]
Comments or special instructions:
ALESPERSON | P.O.NUMBER | SENT DATE SENT VIR | F.OB. POINT TERMS
[Dhuz on reecaipl
QUANTITY DESCRIPTION UNIT PRICE AMOUNT
SUBTOTAL
SALES Tax
P&F
TOTAL DUE

Make all cheques payabde (o [Your Company Mame]

If you have any guestions conceming fis invoece, contact [Mame, Phane Mumber, E-mall]

THANK YOU FOR YOLR BUSINESS!

